□このページをPDFダウンロードする□簡易見積書をPDFダウンロードする
社内に存在しているであろう、いろいろなタイプのデータをベースに、まず目的のアウトプットを想定し、様々な理論・技術をつまみ食いしながら、最終ゴールに短期間でたどりつくためのノウハウを紹介します。 リアルなデータを使って、ネットワーク分析やペルソナマーケティングなど、新しい分析手法のプロセスを演習を通じて実際に体験していただくことで、「高い壁」と考えられがちな“データサイエンス”が意外なほどあっさり乗り越えられることを実感するとともに、データを裏付けとしたプチ提案につなげていく力の体得を目指します。
日時 |
2015年12月4日(金) 10:00-17:00 |
|
---|---|---|
カテゴリー |
IS戦略策定・IS戦略評価・IS企画・IS企画評価 IS活用 業務遂行スキル専門スキル |
|
講師 |
久保田真人 氏 |
|
参加費 |
JUAS会員/ITC:33,000円 一般:42,000円(1名様あたり 消費税込み、テキスト込み)【受講権利枚数1枚】 |
|
会場 |
||
対象 |
IT部門でデータ活用の基礎的な考え方を身につけたい方初級 |
|
開催形式 |
講義、グループ演習 |
|
定員 |
25名 |
|
取得ポイント |
※ITC実践力ポイント対象のセミナーです。(2時間1ポイント) |
|
ITCA認定番号 |
ITCC-CPJU9249 | |
ITCA認定時間 |
6 | |
|
<<受講者の声>>
●ワークショップがあったのが短い時間で1つの結果を導き出す良い練習となった【一般消費材製造業】
●データ分析を行うにあったって、有用な知見が沢山含まれている。【機械製造業】
●演習を行ってデータ分析の難しさを体感できたことがよかった。
分析ツールも使用できてよかった。【製造系情報子会社】
*******************************************
データサイエンスは、IT、統計、マーケティングの3つを統合しながら、膨大なデータから、様々な施策立案に資する情報を導き出す技術のことです。しかし、IT、統計、マーケティングは各々独立した技術・理論体系をもつ専門領域であり、ひとつを極めるだけでも非常に難しく、ましてこの3つを同時に体系的かつ網羅的に取得することは事実上不可能と言えます。
実際のデータサイエンスの現場で求められる解は常に応用問題です。かつ、その解を導かなければならない環境も、「時間とコストの最小化」という命題から無縁ではいられません。つまりゆっくりと「基礎」を学びながら自らを”データサイエンティスト”として磨き上げていくという手順を踏むことはあまり現実的ではないのです(艱難辛苦の末に、晴れて“データサイエンティスト”となった暁には、すでに学んだIT技術は古臭いものになっているかもしれません)。
そこで本セミナーでは、社内に存在しているであろう、いろいろなタイプのデータをベースに、まず目的のアウトプットを想定し、様々な理論・技術をつまみ食いしながら、最終ゴールに短期間でたどりつくためのノウハウを紹介します。
リアルなデータを使って、ネットワーク分析やペルソナマーケティングなど、新しい分析手法のプロセスを演習を通じて実際に体験していただくことで、「高い壁」と考えられがちな”データサイエンス”が意外なほどあっさり乗り越えられることを実感するとともに、データを裏付けとしたプチ提案につなげていく力の体得を目指します。
また、利用するツールも、Excelなどの基本ソフトやフリーウェアを最大限に利用しますので、コストの面からも足を踏み入れやすい内容となっております。
<<内容>>
1. データサイエンスとは
2.目的から考えるデータサイエンス
(1)求められるアウトプットとは~最終利用者のニーズを形にする
(2)ゴールまでの最短距離を考える~分析計画のたて方
(3)材料を集める~存在するデータの理解と加工
(4)ツールを準備する~分析のための道具箱
3.3つのデータタイプから導くデータサイエンスの実例とプロセス
(1)ネットワーク分析による消費者購買行動
(2)ペルソナマーケティングによる重要顧客像の表出
(3)テキストマイニングによる「お客様の声」分析
4.ケース演習
実際のデータを使って、顧客の行動や特性のシナリオを導出し、社内のアクションプランを提案するという演習を行います
(1)POSデータを利用した流通に対する棚割り提案
(2)消費者アンケートに基づくメイン顧客となるシニア層の特性抽出
(3)コールセンターに寄せられたクレームから導く商品改善の方向性の導出などを想定しております。
5.まとめ
(1)演習の結果の振り返り
(2)社内活用のためのアクション
<<主たる効果>>
・データが読めるようになる
・キャッチしている、あるいはストックしているデータを、ストーリーを持ってみられるようになる
・データを可視化して他部門にプチ提案ができる